Tag Archives: food security

Eating Insects as Food: A Practical Solution to World Hunger

Have you ever thought of eating little, crunchy, yummy insects such as grasshoppers and cockroaches? What will be your response when someone asks you to have  ‘cricketty-cricketty crickets’ or ‘buzzerry-buzzery buggies’ dinner? Hmm… Quite weird huh! But, if it becomes a solution for the world hunger after 50 years, what will your response be? Oh well, let us see what’s so good about insects and why it is considered as that.

Consumption of edible insects has been part of human history for many cultures. These insects played an important role as part of human nutrition in many regions worldwide like Africa, Latin America and Asia. Rural areas in these regions suffer from malnutrition, especially protein-energy malnutrition (PEM) (Siriamornpun and Thammapat, 2008).

Communities of Thailand for instance, have a long cultural history of eating insects. They have become well-known for their exotic food like cockroaches, beetles, grasshoppers and other insects; it is one of the countries which have the most registered species that make their way into man’s digestive system.

insects as food
Insects served as part of regular food in a restaurant (Photo by Richard Allaway@Flicker.com)

Over decades, edible insects are used for other products like canned goods or snacks on a commercial-scale. Its use as a sustainable and secure source for human diet has continued to increase (FAO, 2010; Shockley and Dossey, 2014).

Survival Strategy of Edible Insects

The unpredictable changes in the environment causes many organisms to develop adaptation strategies to survive. One of the strategies is to increase in number of offspring that need little energy investment. The underlying reason is that even if there are unpredictable forces of nature, still there will be some left to live, to reproduce, age and pass on future generation just by mere numbers. Many invertebrates follow this strategy – lots of eggs are produced and larvae are formed but only a few survive to maturity (FAO, 2013; Shockley and Dossey, 2014).

Insects place an emphasis on high growth rate which typically exploit less-crowded ecological niches and produce many offspring quickly. The exponential growth curve by Malthus applies in this selection where the population at the beginning is not very high but grows independently at a very fast rate. Nonetheless, these organisms have relatively low chance of surviving to adult stage. Creatures belong under this strategy are called r-strategists (Shockley and Dossey, 2014).

Most of the organisms classified as r-strategists are pests. They damage crops or bother human beings. However, the traditional use of insects as food continues to expand around the world and it gives significant socio-economic and environmental values for the communities (FAO, 2010).

Potential Source of Alternative Food – Solution to World Hunger

It was projected that by 2050, the world will be having 9 billion people. To support the food needs of this number, the present food production will need to almost double. Arable land, however, has become scarce due to rapid development. Oceans are over fished and climate change and other related shortages can have direct or indirect implications to food production. To meet these problems, production and consumption should be re-evaluated. New strategies of producing food are needed (FAO, 2013).

worm as food
Barbecue flavored worm crisps (Photo by Flavio Ensiki@Flicker.com)

There has been a growing realization that insects can meet the scarcity in food especially in the many protein challenged regions. The works of Raksakantong et al. (2010) as stated by Siriamornpun and Thammapat (2008) concluded that one of the cheapest sources of animal protein are insects.

Consumption of insects is continuously encouraged by many people due to financial issues. Many of the poorest populations in the world such as Africa and Asia eat insects as part of their diet (Shockley and Dossey, 2014). It has the potential of supporting many rural dwellers including also those street traders in urban areas, where some of these insects are popular among those who want to try alternative food (FAO, 2013; West Africa Trends Team, 2014).

The efficiency and biodiversity benefits provided by insects are potential for food supplies and sustainability of a region. Insects contain higher nutritional quality than animal protein as well as produced more sustainable and with much smaller ecological footprint than most livestock such as pigs and cows (FAO, 2013; Shockley and Dossey, 2014).

Furthermore, since insects are r-strategists, they tend to produce quickly compared to livestock, thus, have greater efficiency and biodiversity for they can contribute to human food ingredients even within a short period. There are more than 1 million species of edible insects described and still more than 4-30 million species are estimated to exist on earth, living in every niche inhabited by humans and beyond. For instance, house crickets can lay 1,200 – 1,500 eggs in just a matter of 3-4 weeks (Shockley and Dossey, 2014).

Gathering and farming of insects can also offer employment and more source of income. In developing countries like in Asia, demand for edible insects becomes common. It is relatively easy to bring insects to market. Gathering, rearing and processing into street foods, just like the sale of chicken or fish, are within the reach of small-scale enterprises (FAO, 2013).

Finally, the combined force of traditional knowledge and new technologies in gathering, rearing, processing or producing edible insects is a potential solution for world hunger problems.

Yummy, crunchy cockroach meal, anyone?


Food and Agriculture Organization of the United Nations (FAO) (2010). Edible forest insect: humans bite back! Rome, Italy: Publishing Policy and Support Branch.

Food and Agriculture Organization of the United Nations (FAO) (2013). Edible insects: future prospects for food and feed security. Rome, Italy: Publishing Policy and Support Branch.

Shockley M. and A. T. Dossey (2014). Insects for Human Consumption. In Mass Production of Beneficial Organisms Invertebrates and Entomopathogens. J. A. Morales-Ramos, M. G. Rojas and D. I. Shapiro-Ilan (Eds.). Chapter 18. Pp/ 617-652.

Siriamornpun, S. and P. Thammapat (2008). Insects as a Delicacy and a Nutritious Food in Thailand.  Thailand: International Union of Food Science and Technology. p. 1-9.

West Africa Trends Team (2014). Bushmeat and the future of protein in West Africa. West Africa Trends Newsletter, Issue 9. African Center for Economic Transformation. p. 8-13.

©2014 November 27 Shellemai A. Roa

Solution to World Hunger: Eat the r Strategists

How can world hunger be resolved? The answer: through eating the r strategists! What are r-strategists and how can these animals help relieve pressure on animal populations that traditionally serve as human food? This article explores the possibility of consuming alternative food sources. 

The increasing demand for food of 7.2 billion people in the world puts pressure on conventional food sources. Thus, there is a need to explore alternative food sources. Scientists recommend the consumption of animals called r-strategists.

What are r strategists?

The so-called r-strategists are animals that reproduce so fast that chances for their populations to get depleted is much lower compared to other animals. These animals can live in unstable environments, meaning, situations and conditions where animal populations are under threat. The adaptive evolution is to have so many of their own kind. Thus saith the r/K theory that became popular in the 1970s.

For better understanding, let me define the r and the K in the r/K theory.

The r/K Theory

The r in the theory refers or comes from the word “rate.” This word reminds us to think about the rate of reproduction by which animals of this group propagate. These animals rapidly reproduce to compensate for their small size which easily become prey to other animals in the higher echelon of the food chain. And each of the offspring get less or no parental care. They can also easily adjust to environments that fluctuate. This adaptation strategy increases their chance to survive as a species.

aphids and ants
Ants and aphids are r-strategists because they rapidly reproduce and are small. These two organisms exhibit mutualism: the aphids provide the sugary honeydew they obtain from the guava to the ants while the ants provide them protection from their predators like the ladybugs (see an interesting ant defense here: http://www.pbase.com/antjes/lady_bug)

Meanwhile, the K in the theory refers to “carrying capacity.” In contrast to the r-strategists, animals that belong to this category undertake controls to their population by remaining close to the carrying capacity of their habitat. They adopt efficiency in resource use to maintain sustenance or adequate resources for each of the individuals in the face of scarce resources.

The carrying capacity of the habitat must not be exceeded to ensure the survival of these species. Thus, the K-strategists reproduce slowly, nurture their young, have larger bodies, and smaller in number compared to the r-strategists. These animals lie belong to the higher rung of the food chain, serving as “pools of nutrients” that can live in a stable habitat for a long time.

The bearcat Arctictis binturong is a K-strategist because gestation takes about 90 days and the average number of offspring per year is only two.

While recent theories like the Life History Theory supplanted the r/K theory, the terms r– and K-strategists are still used by scientists as this theory appears to be a necessary step in the study of animal adaptation to their environment. If you try to apply this theory by looking at the way animals propagate, it just makes sense. Small animals tend to produce more of their kind while the large animals reproduce slowly.

There are , however, always exceptions to any rule. For example, the bivalve Icelandic quahog (also known as black clam, Islandic cyprine, or black quahog) can live for more than 400 years! Also, the relatively small fish called orange roughy reproduce only upon reaching 20 years of age. And these fishes are estimated to live 149 years! This is the reason these fishes were not able to easily regain their population when their populations were subjected to intense fishing pressure in New Zealand, Australia and Namibia because of their popularity as food.

r-Strategists as Food?

hen and chicks
A free-ranging mother hen provides protection to its chicks.

Generally, the animals that are found acceptable by society to eat today are essentially K-strategists. These include meat coming from cows, swine, goat, chicken, among others. The last one, however, appears to lean on the r-strategists because of their short life span. Besides, these birds are domesticated and their growth is hastened to serve increasing fast food consumption demands.

We do eat fishes that are mostly r-strategists although we tend to consume too much of the wild populations. Thus, controls towards sustaining the population of these marine organisms are instituted in most countries  with intense fishing efforts.

Other r-strategists that are considered pests because of their great numbers may be considered as general food sources. For example, places like Thailand have exotic foods or foods that are generally regarded bizarre by people from other countries. These include fried crickets, earthworms, scorpions, steamed bugs, cockroaches, ant eggs and all sorts of bugs. These are all r-strategists since they reproduce rapidly but many find unpalatable despite their respectable nutritional value.

These pests are abundant in areas where people suffer malnutrition and lack of food. Is it time that these animals become a normal part of the diet? This may be the solution to world hunger. That is, if hungry people have the guts to fill their stomachs with such wiggly, wriggly and critty creatures.

Anyone ready to eat a crunchy and creamy cockroach?


Reznick, D.; Bryant, M. J.; and Bashey, F. ,2002. r-and K-selection revisited: the role of population regulation in life-history evolution. Ecology, 83 (6): 1509–1520. doi:10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2

Schleif, M. 2013. “Arctictis binturong” (On-line), Animal Diversity Web. Accessed September 01, 2014 at http://animaldiversity.ummz.umich.edu/accounts/Arctictis_binturong/

© 2014 September  2 P. A. Regoniel